tapflo

AIR OPERATED DIAPHRAGM PUMPS

edition 2015 rev 1

>> All about your flow

www.tapflo.com

All about your flow

Tapflo is a leading pump manufacturer with the ambition to provide a wide range of premium products for various industrial applications. We focus on delivering the best fluid processing solutions and support on all stages of the process, worldwide.

About Tapflo

Tapflo is an independent, Swedish, family owned, manufacturer and global supplier of air operated diaphragm pumps, centrifugal pumps and other industrial process equipment. The company was founded in Kungälv, Sweden in 1980 and has since then been working with design and manufacture of thermoplastic, metal and sanitary series diaphragm pumps and also with complete range of centrifugal pumps and industrial equipment. After years of dynamic development the company evolved into Tapflo Group with worldwide operations. Tapflo Group is represented by own companies and independent distributors in more than 60 countries spread over the world on 6 continents - products and spare parts are available worldwide.

Quality certified

At Tapflo we believe that quality is one of the highest values, both for our customers as well as our employees. As a result, we comply with various globally recognised certification and quality control institutions. Many of our products comply with EC ATEX directives for equipment intended for use in explosion hazardous environments.

The aseptic series is EHEDG certified (European Hygienic Engineering & Design Group), the pharmaceutical series has USP VI and EC 1935/2004 approval.

All our products are obviously CE marked and followed by our comprehensive instruction manuals. Tapflo manufacturing process is certified according to ISO 9001:2009.

Long term engagement is our core

Our aim is to continuously provide premium products according to evolving needs of our customers. That is why we see each customer relationship as a long term commitment.

Local means on your terms

Tapflo is your global partner providing local support. No matter where your plant is located you can expect us to support you locally.

Flexibility the foundation of good service

We are prepared to deal with reality, knowing that in practice this means answering questions, offering solutions and supplying spare parts with a minimal loss of time.

Customizing to bring the product to the needs

Our intention is always to help our clients find the most cost effective solutions to increase their company's efficiency. If this means changing the design of the pump

we see it as a challenge - not a problem.

To produce is to develop

When you are actively involved in the manufacturing of a product, it is almost impossible not to discover ways to improve it. This allows us to frequently offer solutions that are even more sustainable and efficient.

Contents

General Tapflo - your reliable pumpchoice The history of Tapflo Where do you use Tapflo pumps? How Tapflo pumps work Some benefits with Tapflo pumps How to install Tapflo pumps Key components of the Tapflo pump PE & PTFE series PE & PTFE series pumps The ingenious Tapflo design Typical applications	2 2 4 6 6 7 8 10 10 11 11
Special versions Performance curves Capacity changes Dimensions Technical data Pump code	12 15 15 16 17 17
Metal series Metal series pumps 1/3 is enough for us Typical applications Special versions Performance curves Capacity changes Dimensions Technical data Pump code	18 19 19 20 22 22 23 24 24
Sanitary series Sanitary series The sanitary design Typical applications Special versions Performance curves Capacity changes Data Pump code	25 25 26 26 27 28 28 29 29 29
Aseptic EHEDG pumps	30
Systems & accessories Active pulsation dampeners Dampener code and data Guardian systems, barrier, dry run and dead head	32 32 33 34
Pneumatic level control system Pneumatic batch control unit Stroke counter, life counter Filter regulator & needle valve kit Pneumixer	35 35 36 36 37
Powder transfer pumps	38
Other Tapflo products	39

Where do you use Tapflo pumps?

Tapflo pumps are some of the most versatile pumps on the market today. They can be used in a variety of installations in numerous applications. Thanks to the simple operating principle, with a compact and reliable design, Tapflo diaphragm pumps meet the demands of heavy industrial duties.

Various liquids

Tapflo pumps are compatible with a very wide range of chemicals:

- Corrosive and chemical aggressive
- ► High and low viscous
- Abrasive
- Solid laden
- Shear sensitive
- ▶ Flammable

Below you will find some of the most common applications

Chemical industry

Transfer of all kind of acids, alkalis, alcohol, solvents and shear sensitive products such as latex and emulsions, as well as chemical waste products.

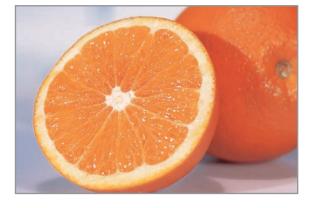
Surface conditioning

Transport of chemicals from storage tanks, containers and baths, for example in pickling, galvanization and degreasing. Handling of waste products.

Water treatment

Pumping samples, dosing acids and alkalis for pH-control. Transfer of flocculent, suspensions, chemical reagents and sludges. The pumps are resistant to hydrochloric acid and ferric chlorite, plus many others.

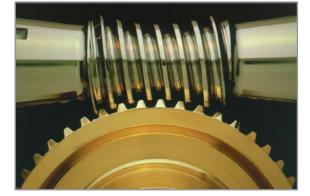
Various liquids...


Pulp and paper industry

Transport of glue, sodium silicate, colour and titanium oxide etc. Bleaching products, sampling and waste water handling.

Hygienic applications

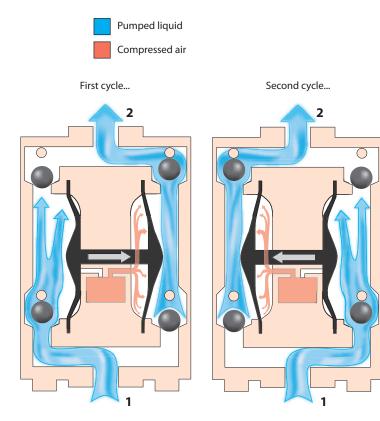
Transfer of food products like soup, cream, syrup, milk, yoghurt, flavours, spirit, chocolate, dough, creams, paste, perfumes and toothpaste. Service applications as spraying of cleaning liquid in CIP systems.



Mechanical industry

Handling of oil, fats, lubricants, cooling liquids, washing and cleaning liquids, solvents and waste products etc.

Paint, print and varnish industry


Transfer of water- and solventbased paints, ink, varnish, glue, adhesives and solvents. Transfer, recirculation and blendning of ink in printing industies.

How Tapflo pumps work

The Tapflo diaphragm pump is driven by compressed air. The two diaphragms, connected by a diaphragm shaft, are pushed back and forth by alternately pressurising the air chambers behind the diaphragms using an automatically cycling air valve system.

Suction (1)

One diaphragm creates a suction action when being pulled back from the housing.

Discharge (2)

The other diaphragm simultaneously transmits the air pressure to the liquid in the housing, pushing it towards the discharge port.

During each cycle the air pressure on the back of the discharging diaphragm is equal to the head pressure on the liquid side. Tapflo diaphragm pumps can therefore be operated against a closed discharge valve with no adverse affect to the life of the diaphragms.

Some benefits with Tapflo pumps...

Thanks to the simple operating principle, with a compact and reliable construction, Tapflo diaphragm pumps meet the demands of heavy industrial duties. Below are some of the major benefits of Tapflo pumps.

Feature	Benefit
Run dry without damage	Easy to use, no need of guarding device
Infinitely variable flow control	Flexible and easy to adjust
Few components	Low down time and maintenance costs
 Self priming up to 5 m from dry suction pipe 	More options of installation
Solid, strong and long life design	Low maintenance costs
Lubrication free air distribution system	Saves the environment from pollution
No electricity needed	Explosion proof versions Ex-zone 1 available (ATEX group II, cat 2)
 Air operated 	Can run against a closed pipe or closed valve without damage. Easy to install without special training (no electricity)

How to install Tapflo pumps

The Tapflo pumps are flexible in their ease of installation. The in- and outlet ports are infinitely turnable more than 180° in to fit your piping system (PE & PTFE and metal series pumps).

Flooded

The piping system is designed with a positive suction head. This is the best way of installtion where it is necessary to completely evacuate all liquid from the container, or where viscous (thick) products are transfered.

Selfpriming

The Tapflo pump is designed to pull a high vacuum. It is able to evacuate an empty suction pipe without any damage to the pump. The suction lift is up to 5 meter (16.4') from an empty suction pipe and up to 8 meter (26.2') from a wetted pipe. The suction capability depends on the pump size (see pages 17, 24, 29)

Submerged

All Tapflo pumps may be submerged into the liquid. It is important to make sure that all components which are in contact with the liquid are chemically compatible. The air exhaust must be led to the athmosphere by means of a hose.

Key components of the Tapflo pump

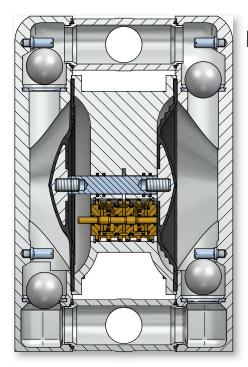
Three major components are especially vital for the function of the pump...

Long life diaphragms

With our experience of diaphragm manufacture since 1990, we are able to supply unique technology compression molded diaphragms of outermost quality.

Tapflo diaphragms are of composite construction, superior for continuous heavy duty service, with a completely smooth surface in contact with the liquid. This results in no leak through and a diaphragm which is easy to keep clean. The diaphragm is available in various materials and colours to suit any requirements, it is made from PTFE TFM, PTFE TFM modified for solvents, EPDM, NBR or FKM.

The PTFE film of the diaphragm forms a closed surface to the liquid. The integrated light metal supporting core and the fabric reinforcement fulfill high strength requirements.


Components of PTFE TFM diaphragm

An advanced process of preforming, curing, trimming and finishing result in a long life composite diaphragm that will last for many millions of stroke cycles.

All compounds are special developed and optimized for composite diaphragm technology and compression molding production. Components are chemically bonded by bonding agents and adhesives.

- 1) PTFE TFM layer
- 2) Elastomer upper half
- 3) Core (metal)
- 4) Fabric
- 5) Elastomer lower half

Key components of the Tapflo pump


The energy saving drive, with its central placed air valve is crucial to achieve short air ways and minimum dead volumes.

Pollution free air valve

The air valve is the driving heart of the pump, distributing the compressed air to the chambers behind the diaphragms. It is made for maintenance free duty with no lube air, thanks to the ingenious sealing system. It will not only save your money for lubrication, it will also save your environment from pollution. The Tapflo air valve has no deadlock position – the pump will always start automatically when air is supplied to the pump. The valve body is made from brass or optional PET or stainless steel AISI 316.

Energy saving drive

After decades of development and fine tuning of the air valve, seals, air distribution ways, the diaphragms and shaft, you have now an air operated diaphragm pump with a very high degree of efficiency. The air valve is placed in the middle of the pump between the diaphragms, to achieve short air ways and a minimum of so called dead volumes. This all together is the key to a reliable and energy saving drive.

Ball check valves

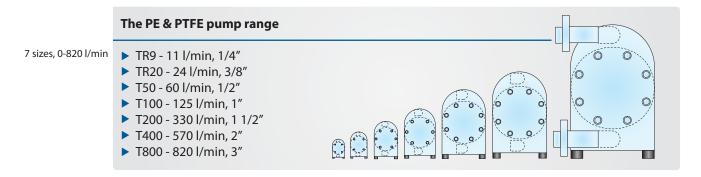
The Tapflo pump is fitted with four check valves, making sure that the liquid is transferred in the right direction through the pump. The valve is of ball valve type, the most simple and reliable valve design. It has a good sealing capability and is easy to keep clean and to replace if necessary. The valve ball is available in EPDM, NBR (nitrile), PTFE, AISI 316, polyurethane and ceramic to suit any kind of liquid.

Flap valves

Flap valves are available for the sanitary pumps, ideal in applications with bigger size and delicate solids. The gentle pumping principle will maintain solids without any destruction. Max particle size is 48 mm (with pump T425).

Tapflo PE & PTFE series with its famous smooth and solid design for heavy duty industrial applications

PE & PTFE series pumps


Tapflo pumps made from polyethylene (PE) or PTFE are suitable for handling almost any kind of liquid whether it is viscous, chemically aggressive or with solids.

Polyethylene pumps

Polyethylene (PE HD) has a superior wear resistance which is 6 - 7 times better than for polypropylene (PP). This fact makes the pump suitable for handling abrasive slurries etc. PE is resistant to most kind of aggressive chemicals such as concentrated acids and alkalis. Maximum liquid temperature is 70° C.

PTFE pumps

PTFE (virgin polytetrafluorethylene) is a thermoplastic polymer with superior chemical resistance. The PTFE pump will handle even the most aggressive acids, for instance concentrated nitric acid. Maximum liquid temperature is up to 100°C.

The ingenious Tapflo design Few components and a simple but ingenious design is peculiar for all Tapflo pumps. It is a compact pump, easy and quick to maintain, keeping your service costs and process down time to a minimum.

1. Flexible installations

The connections may be rotated 180°. Simply turn the connections to fit your piping system. Threaded BSP or NPT plastic connections is standard, AISI 316 or other connections types are also available.

2. Solid and strong

The pump body is machined from solid PE or PTFE. The solid design will stand against mechanical forces as well as aggressive chemicals.

3. Chemical design

The compound diaphragm has a completely smooth liquid side surface and with no metal in contact with the liquid. Ideal for a safe chemical handling.

4. Low air consumption

The air distribution system is designed with shortest possible air distribution ways. This eliminates "dead spaces", resulting in high effiencey and low air consumption.

Typical applications

Industry	Example of applications	
Chemistry	Acids, alkalis, alcohol, solvents, latex, emulsions	PE pumps for most chemicals and ab-
► Food	CIP fluid, flavouring, pigments	rasive medias
Pulp & Paper	Glue, slurries, adhesives, dispersions, resins, sodium silicate, titanium oxide	PTFE pumps for the most aggres- sive chemicals
Surface conditioning	Electroplating baths, various acids, solvents, anodic sludge, varnish, ena- mels	
Water treatment	Sludge handling, filter press applications, neutralization and floc- culants.	
 Electronics 	Carrier fluids, ultra pure liquids, electroplating solutions, mercury, solvents	
Print & paint	Glue, additives, varnish, ink, paint, latex, acid, resins, pigments	

Special versions

Handle your liquids comfortable. You will easily move your Tapflo drum pump between drums and containers.

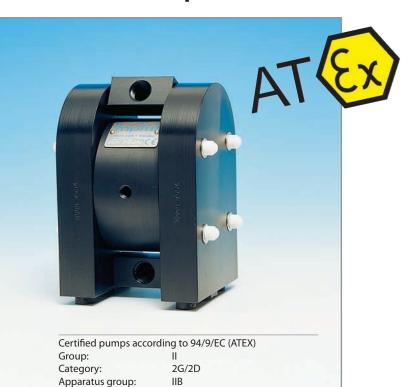
Drum pumps TD

The Tapflo drum pump is ideal for mobile use. It is fitted with a drum tube in polypropylene (PP) or PTFE and a handle in stainless steel AISI 316L. The drum tube is delivered in any length up to 2 m. Tapflo diaphragm drum pump has many advantages compared with conventional drum pumps.

The PE & PTFE drum pumps

- TDR20 24 lit/min, 3/8"
- TD50 60 lit/min, 1/2"
- TD100 125 lit/min, 1"

TD100 is available in PE only (no handle)


Feature	Benefit
No rotating parts	Gentle liquid handling – ideal for shear sensi- tive liquids or abrasive products. Adjustable suction pipe length.
High pressure	Able to handle even high viscous products
 Infinitely variable flow 	Easy to adjust the flow for a safe fluid handling

Special versions

Explosion proof pumps TX

The ATEX directive 94/9/EC (also known as ATEX 100a) is applicable on products used in explosion hazardous zones.

Tapflo pumps made from conductive (carbon filled) plastics PE or PTFE are made for use in explosion hazardous environments. They can be used in Ex-zone 1. The conductive material ensures that no electrostatic loads will be accumulated in the pump. The conductive pigments in the material reduces the surface resistance to less than 105W. Transfer of alcohol and solvents are examples of applications for the Tapflo TX pumps.

T3-T6

Temperature class:

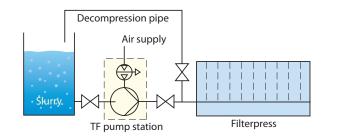
Twin pumps TT

Tapflo PE & PTFE series pumps may be fitted with double in/outlet to achieve "two pumps in one" for blending, mixing or recirculation of liquids. The liquid in one pump chamber is separated from the other one.

Application examples

- Transfer of glue resin and hardener separated from each other
- Transfer and recirculation of ink to printing machines (see sketch on page 21).

Special versions



TF filterpress pump stations

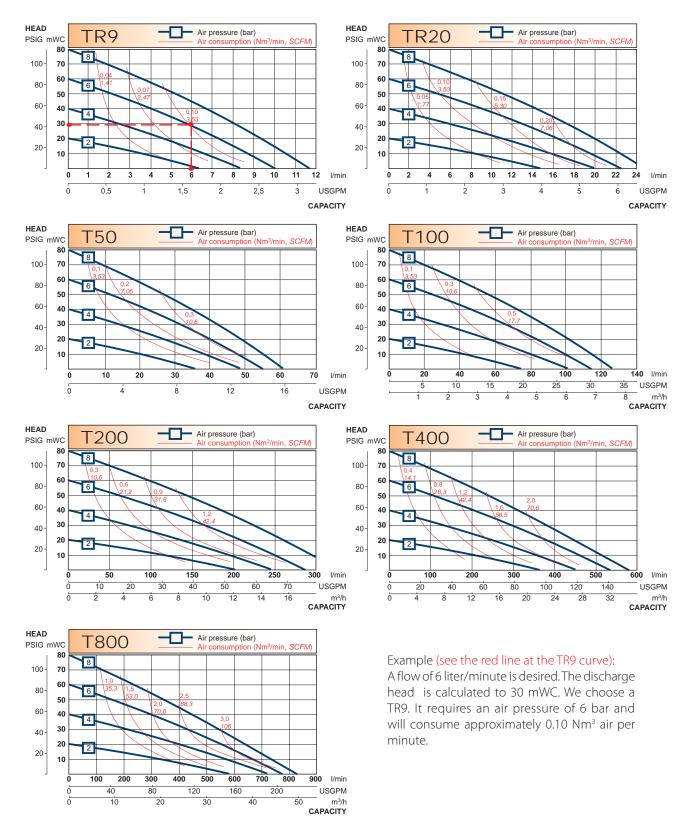
The Tapflo pump station for filterpress feeding is a very compact unit that can be mounted directly to the filterpress. The design and function allows the user a straightforward pressing of slurries. Pressure regulator is already mounted to the unit. The pump stations are based on the standard Tapflo pumps from machined polyethylene (PE). An external pressure booster doubles the delivery pressure. For example, with available air pressure of 7 bar, the delivery pressure will be maximum 14 bar.

The installation

As this station works self-regulating, an additional device for regulating the flow quantity is not necessary. Just mount it to the filterpress, connect it – ready. Even the pressure regulator for the air supply is included. For monitoring the filling-level of the filterpress, stroke sensors and stroke counters are available.

Some benefits...

- Can run dry
- Self priming
- High pressure transmission up to 1:2
- Few parts easy to maintain
- Compact
- Reliable
- Long service life


The TF pump range

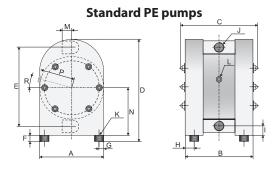
4 sizes,	Pump size	Connection size	*Max capacity	Max pump pressure
0-400 l/min		(" BSP or NPT)	(I/min) / (US GPM)	(bar) / (PSI)
	TF 50	1/2″	*50 / 13	14 / 203
	TF 100	1″	*100 / 26	14 / 203
	TF 200	1 1/2″	*200 / 53	12 / 174
	TF 400	2″	*400 / 106	12 / 174

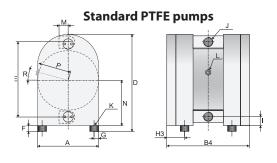
* = This max flow is obtained when using a bypass round the pressure booster at low pressure

Performance curves

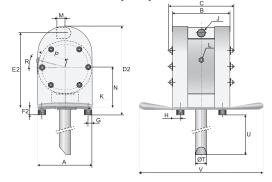
The performance curves are based on water at 20°C. Other circumstances might change the performance. See page 22 how the capacity will change at different viscosities and suction lifts. These curves are valid for all PE & PTFE series, except from the TF pumps.

Changes reserved without notice

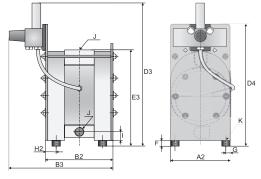

Dimensions


Dimensions for PE & PTFE series

Dimensions in mm (where other is not indicated) Dimensions in inch (where other is not indicated)


9 20 50 100 200 400 800 A 70 105 150 200 270 350 460 2.76 4.13 5.91 7.87 10.63 13.78 18.11 A2 - - 5.91 11.81 11.81 15.91 - B 944 112 160 214 310 380 589 3.70 4.41 630 8.43 12.20 14.96 23.19 B2 - - 6.61 8.70 12.00 15.35 420 - 5.28 5.98 7.87 10.00 13.78 16.54 - C 115 135 190 250 345 425 637 C 115 135 18.73 24.00 7.77 25.03 D4 134 157 25.05 30.0 7.00 - - 15.16 21.65 27.56	Dim			Pump	size			
2.76 4.13 5.91 7.87 10.63 13.78 18.11 2 - 5.91 11.81 11.81 15.91 - B 94 112 160 214 310 380 589 B2 - - 168 221 320 390 - B3 - - 168 8.70 12.60 15.35 - B4 134 152 200 254 350 420 - 10.51 135 190 250 345 425 637 4.53 5.31 7.48 9.84 13.58 16.73 25.08 D2 - 175 250 325 - - - 103 - 385 550 700 770 - - 113.0 18.78 24.80 27.17 - - - 12 - 13.50 18.78	Unit	9	20			200	400	800
A2 - - 5.91 11.81 11.81 15.91 - B 94 112 160 214 310 380 589 3.70 4.41 6.30 8.43 12.20 14.96 23.19 B2 - - 1661 8.70 12.60 15.35 - B3 - - 277 391 490 598 - B4 134 152 200 254 350 420 - C 115 135 190 250 345 425 637 D1 123 168 243 320 450 563 830 A484 6.61 9.57 12.60 1.72 22.17 32.68 D2 - 1350 18.78 24.80 27.17 - D3 - - 335 550 7.0 - - D4 -	A	70	105	150	200	270	350	460
· · · · · · · · · · B 94 112 160 214 310 380 589 B2 - - 168 221 320 390 - B3 - - 277 391 490 598 - B4 134 152 200 254 350 420 - C 115 135 190 250 345 425 637 4.33 5.31 7.48 9.84 1358 16.73 25.08 D2 - 175 250 325 - - - 6.89 9.84 12.80 - - - - - D3 - - 13.50 18.78 24.80 27.17 - E 92 132 190 252 335 440 650		2.76	4.13					18.11
B 94 112 160 214 310 380 589 B2 - - 6.61 8.70 12.60 15.35 - B3 - - 2.77 391 490 588 - B4 134 152 200 254 350 420 - 5.28 5.98 7.87 10.00 13.78 16.54 - C 115 155 190 250 345 425 637 4.53 5.31 7.48 9.84 1358 16.73 25.08 D2 175 250 3.45 16.73 25.08 D3 - 7.86 21.60 17.72 22.17 32.68 D4 - 343 477 630 690 - - D4 - 343 477 630 690 - - D2 12.190 252 344	A2	-	-					-
3.70 4.41 6.30 8.43 12.20 14.96 23.19 B2 - - 168 221 320 390 - B3 - - 277 391 490 598 - B4 134 152 200 254 350 420 - C 115 135 190 250 345 425 637 L 123 168 243 320 450 563 830 L 123 168 243 320 450 563 830 L 175 250 325 -	D	-	-					-
B2 - - 6.61 8.70 12.60 15.35 - B3 - - 277 391 490 598 - - - 10.91 15.39 19.29 23.54 - B4 134 152 200 254 350 420 - 5.28 5.98 7.87 10.00 13.78 16.54 - C 115 135 190 250 345 425 637 4.84 6.61 9.57 12.60 17.72 22.17 32.68 D2 - 17.5 250 32.5 - - - D3 - - 385 550 700 770 - D4 - - 343 477 630 690 - 2 132 190 252 345 440 650 362 5.20 7.48	В							
- - - 277 391 490 598 - B4 134 152 200 254 350 420 - 528 5.98 7.87 10.00 13.78 16.54 - 115 135 190 250 345 425 630 115 135 17.48 9.84 1358 16.73 25.08 D1 123 168 243 320 450 563 830 123 168 243 320 450 563 830 124 175 250 325 -	B2							
- - 10.91 15.39 19.29 23.54 - B4 134 152 200 254 350 420 - C 115 135 190 250 345 425 637 4.53 5.31 7.48 9.84 13.58 16.73 25.08 D 123 168 243 320 450 563 830 120 - 175 250 325 - - - - 103 - - 385 550 700 770 - 104 - - 343 477 630 690 - 15.16 21.65 27.56 30.31 - - - 104 - - 345 440 650 3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 <t< td=""><td>52</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>_</td></t<>	52	-	-					_
B4 134 152 200 254 350 420 - C 115 135 190 250 345 425 637 D 123 168 243 320 450 563 830 D2 - 175 250 325 - - - D3 - - 385 550 700 770 - D4 - - 343 477 630 690 - D4 - - 343 477 630 690 - C 362 520 748 942 1358 17.32 2559 E2 - 147 210 280 - - - S.79 8.27 11.02 - - - - - E3 - - 984 13.11 18.39 23.15 - F <	B3	-	-	277	391	490	598	-
5.28 5.98 7.87 10.00 13.78 16.54 - C 115 135 190 250 345 425 637 L 133 168 243 320 450 5563 830 L - 175 250 325 - - - D - 6.89 9.84 12.80 - - - D3 - - 385 550 700 770 - C - 15.16 21.65 27.56 30.31 - D4 - - 13.50 18.78 24.80 27.17 - E 92 132 190 252 345 440 650 3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 28 - - - 6.31 0.31 0.31		-	-	10.91	15.39	19.29	23.54	-
C 115 135 190 250 345 425 637 L 4.53 5.31 7.48 9.84 13.58 16.73 25.08 D 123 168 423 320 450 563 830 D2 - 175 250 325 - - - - 6.89 9.84 12.80 - - - - D3 - - 343 477 630 690 - - - 15.16 21.65 27.56 30.31 - D4 - - 343 477 630 690 - - - 343 477 630 630 - - 92 132 190 252 345 440 650 362 5.20 7.48 9.92 13.58 1.32 25.59 E2 - 147	B4							-
4.53 5.31 7.48 9.84 13.58 16.73 25.08 D 123 168 243 320 450 563 830 D2 - 175 250 325 - - - - 6.89 9.84 12.80 - - - - 6.89 9.84 12.80 - - - - 6.89 9.84 12.80 - - - - 343 477 630 690 - - - 343 477 630 690 - - - 343 477 630 690 - - - 343 477 630 690 - - - 1350 18.78 24.80 27.17 - - - 9 13.1 13.11 13.18 30 30 30 -	6							-
D 123 168 243 320 450 563 830 D2 - 175 250 325 - - - D3 - - 385 550 700 770 - D3 - - 385 550 700 770 - D4 - - 343 477 630 690 - D4 - - 13.50 18.78 24.80 27.17 - E 92 132 190 252 345 440 650 3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 280 - - - 5.79 8.27 11.02 - - - - - 6 9 15 21 21 - - - - - - -	C							
4.84 6.61 9.57 12.60 17.72 22.17 32.68 D2 - 175 250 325 -	D							
D2 - 175 250 325 - - - D3 - - 385 550 700 770 - D4 - - 343 477 630 690 - E 92 132 190 252 345 440 650 362 5.20 7.48 9.92 1358 17.32 25.9 E2 - 1477 210 280 - - - - 5.79 8.27 11.02 - - - - E3 - - 9.84 13.11 18.39 23.15 - F 8 8 15 15 30 </td <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	U							
D3 - - 385 550 700 770 - - - 15.16 21.65 27.56 30.31 - D4 - - 343 477 630 690 - - - 13.50 18.78 24.80 27.17 - E 92 132 190 252 345 440 650 3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 280 - - - E3 - - 25.0 333 467 588 - E3 - - 9.84 13.11 18.39 23.15 - F 8 8 15 15 30 30 30 30 30 G3 0.31 0.31 0.59 0.67 1.18 1.18 1.18 1.18 1.18 <td>D2</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D2	-						
- - 15.16 21.65 27.56 30.31 - D4 - - 343 477 630 690 - E 92 132 190 252 345 440 650 E2 - 147 210 280 - - - E3 - - 250 333 467 588 - F 8 8 15 15 30 30 30 0.31 0.31 0.59 0.59 1.18 1.18 1.18 F2 - 15 21 21 - - - 0.31 0.31 0.59 0.67 1.18 1.18 1.18 1.18 F2 - 15 21 21 - - - - 0.35 0.59 0.63 1.18 1.18 1.18 1.18 1.18 1.18 1.18 <td< td=""><td></td><td>-</td><td>6.89</td><td>9.84</td><td>12.80</td><td>-</td><td>-</td><td>-</td></td<>		-	6.89	9.84	12.80	-	-	-
D4 - - 343 477 630 690 - E 92 132 190 252 345 440 650 3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 280 - - - - 5.79 8.27 11.02 - - - E3 - - 9.84 13.11 18.39 23.15 - F 8 8 15 15 30 30 30 0.31 0.31 0.59 0.83 0.83 - - - G 9 15 17 30 30 30 30 30 0.35 0.59 0.63 1.18 1.18 1.18 1.18 1.18 12 15 20 28 38 48 80 0.47 0.59 <td< td=""><td>D3</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td></td<>	D3	-	-					-
- - 13.50 18.78 24.80 27.17 - E 92 132 190 252 345 440 650 3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 280 - - - E3 - - 250 333 467 588 - F 8 8 15 15 30 30 30 0.31 0.59 0.59 1.18 1.18 1.18 1.18 F 8 8 15 17 30 30 30 30 G 9 15 17 30 30 30 15 G 9 15 17 30 30 30 15 G 9 15 17 30 30 30 15 G 9 133 35		-	-					-
E 92 132 190 252 345 440 650 3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 280 - - - - 5.79 8.27 11.02 - - - E3 - - 9.84 13.11 18.39 23.15 - F 8 8 15 15 30 30 30 30 0.31 0.31 0.59 0.59 1.18 1.18 1.18 1.18 F2 - 15 21 21 - <td< td=""><td>D4</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td></td<>	D4	-	-					-
3.62 5.20 7.48 9.92 13.58 17.32 25.59 E2 - 147 210 280 - - - E3 - - 250 333 467 588 - E3 - - 984 13.11 18.39 23.15 - F 8 8 15 15 30 30 30 0.31 0.31 0.59 0.59 1.18 1.18 1.18 F2 - 15 21 21 - - - - 0.59 0.67 1.18 1.18 1.18 1.18 1.18 G 9 15 17 30 30 30 35 .5 G 9 15 17 30 30 30 15 0.39 0.59 0.63 1.18 1.18 1.18 1.18 12 15	E	-	-					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E2							-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-				-	-	-
F 8 8 15 15 30 30 30 F2 - 15 21 21 - - - G 9 15 17 30 30 30 30 G 9 15 17 30 30 30 30 O.35 0.59 0.67 1.18 1.18 1.18 1.18 H 10 15 16 30 30 30 30 O.39 0.59 0.63 1.18 1.18 1.18 55 H2 - - 19 33 35 35 - - 0.75 1.30 1.38 1.38 - 1 J2 1/4" 3/8" 1/2" 1 1/2" 3" J2 1/4" 3/8" 1/2" 1 1/2" 3" J2 1/4" 3/8" 1/2" 1/2" 1/2"	E3	-	-	250	333	467	588	-
0.31 0.31 0.59 0.59 1.18 1.18 1.18 F2 - 15 21 21 - - - G 9 15 17 30 30 30 30 G 9 15 17 30 30 30 30 O.35 0.59 0.67 1.18 1.18 1.18 1.18 H 10 15 16 30 30 30 15 0.39 0.59 0.63 1.18 1.18 1.18 0.59 H2 - - 19 33 35 35 - 1 12 15 20 28 38 48 80 0.47 0.59 0.79 1.10 1.50 1.89 3.15 J 1/4" 3/8" 1/2" 1/1" 11/2" 2" 3" J2 1/4" 3/8" 1/2"		-	-	9.84		18.39	23.15	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50							
G 9 15 17 30 30 30 30 H 10 15 16 30 30 30 11.8 H 10 15 16 30 30 30 15 0.39 0.59 0.63 1.18 1.18 1.18 0.59 H2 - - 19 33 35 35 - - 0.75 1.30 1.38 1.38 - - I 12 15 20 28 38 48 80 0.47 0.59 0.79 1.10 1.50 1.89 3.15 J 1/4" 3/8" 1/2" 1 11/2" 2" 3" J2 1/4" 3/8" 1/2" 1 11/2" 2" 3" J2 1/4" 3/8 1/2" 3/4" 1 11/2" - K M4x20 M8x25 <td< td=""><td>F2</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td></td<>	F2	-				-	-	-
0.35 0.59 0.67 1.18 1.18 1.18 1.18 1.18 H 10 15 16 30 30 30 15 0.39 0.59 0.63 1.18 1.18 1.18 1.18 0.59 H2 - - 19 33 35 35 - - 0.75 1.30 1.38 1.38 - - I 12 15 20 28 38 48 80 0.47 0.59 0.79 1.10 1.50 1.89 3.15 J 1/4" 3/8" 1/2" 1 11/2" 2" 3" 1/4 3/8" 1/2" 1 11/2" 2" 3" J2 1/4" 3/8" 1/2" 3/4" 1 1/2" 1/2" K M4x20 M8x25 M8x25 M8x25 M8x25 M8x25 M8x25 M4 1/4	G	9				30	30	30
H 10 15 16 30 30 30 15 0.39 0.59 0.63 1.18 1.18 1.18 1.18 0.59 H2 - - 19 33 35 35 - - 0.75 1.30 1.38 1.38 - - 1 12 15 20 28 38 48 80 0.47 0.59 0.79 1.10 1.50 1.89 3.15 J 1/4" 3/8" 1/2" 1" 11/2" 2" 3" 12 1/4" 3/8" 1/2" 1" 11/2" 2" 3" J2 1/4" 3/8" 1/2" 1/4" 1/2" 1/2" 1/2" K M4x20M4x20 M8x25 M8x25 M8x25 M8x25 M8x25 M4 1/8" 1/4" 1/4" 1/2" 1/2" 1/2" M 15	G							
H2 - - 19 33 35 35 - I 12 15 20 28 38 48 80 0.47 0.59 0.79 1.10 1.50 1.89 3.15 J 1/4" 3/8" 1/2" 1" 1.1/2" 2" 3" J2 1/4" 3/8" 1/2" 1" 1.1/2" 2" 3" J2 1/4" 3/8" 1/2" 1 1.1/2" 2" 3" J2 1/4" 3/8" 1/2" 3/4" 1" 1.1/2" - K M4x20 M8x25 M8x25 M8x25 M8x25 M8x25 M4 M4 M8 M8 M8 M8 M8 M8 L 1/8" 1/4" 1/4" 1/2" 1/2" 1/2" M 15 17 25 38 54 70 95 0.59 0.67	Н							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.39	0.59	0.63	1.18	1.18	1.18	0.59
I 12 15 20 28 38 48 80 0.47 0.59 0.79 1.10 1.50 1.89 3.15 J 1/4" 3/8" 1/2" 1" 1 1/2" 2" 3" J2 1/4" 3/8" 1/2" 1" 1 1/2" 2" 3" J2 1/4" 3/8" 1/2" 3/4" 1" 1 1/2" - K M4x20M4x20 M8x25 M8x25 M8x25 M8x25 M8x25 M8x25 M4 M4 M8 M8 M8 M8 M8 M8 L 1/8" 1/8" 1/4" 1/4" 1/2" 1/2" 1/2" M 15 17 25 38 54 70 95 0.59 0.67 0.98 1.50 2.13 2.76 3.74 N 58 81 115 154 211 268 410	H2	-	-					-
0.47 0.59 0.79 1.10 1.50 1.89 3.15 J 1/4" 3/8" 1/2" 1" 1 1/2" 2" 3" 1/4 3/8 1/2 1 1 1/2" 2" 3" J2 1/4" 3/8" 1/2" 3/4" 1" 1 1/2" - 1/4 3/8 1/2 3/4" 1 1 1/2" - 1/4 3/8 1/2 3/4" 1 1 1/2" - K M4x20M4x20 M8x25 M8x25 M8x25 M8x25 M8x25 M4 M4 M8 M8 M8 M8 M8 L 1/8" 1/4" 1/4" 1/2" 1/2" 1/2" M 15 17 25 38 54 70 95 0.59 0.67 0.98 1.50 2.13 2.76 3.74 N 58 81 115 154 211		-	-					-
J 1/4" 3/8" 1/2" 1" 1 1/2" 2" 3" 1/4 3/8 1/2 1 1 1/2 2 3" J2 1/4" 3/8" 1/2" 3/4" 1" 1 1/2" - 1/4 3/8 1/2" 3/4" 1" 1 1/2" - K M4x20M4x20 M8x25 M8x25 M8x25 M8x25 M8x25 M4 M4 M8 M8 M8 M8 M8 L 1/8" 1/4" 1/4" 1/2" 1/2" 1/2" M 15 17 25 38 54 70 95 0.59 0.67 0.98 1.50 2.13 2.76 3.74 N 58 81 115 154 211 268 410 2.28 3.19 4.53 6.06 8.31 10.55 16.14 P 35 52 80 105	I							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J2							-
M4 M4 M8 M8 M8 M8 M8 M8 L 1/8" 1/8" 1/4" 1/4" 1/2" 1/2" 1/2" 1/8 1/8 1/4 1/4 1/2 1/2" 1/2" M 15 17 25 38 54 70 95 0.59 0.67 0.98 1.50 2.13 2.76 3.74 N 58 81 115 154 211 268 410 2.28 3.19 4.53 6.06 8.31 10.55 16.14 P 35 52 80 105 143 183 238 1.38 2.05 3.15 4.13 5.63 7.20 9.37 R 0° 0° 15° 15° 0° 0° 0° 0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33		1/4			3/4	1		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	K	M4x20	0M4x20	M8x25	M8x25	M8x25	M8x25	M8x25
1/8 1/8 1/4 1/4 1/2 1/2 1/2 M 15 17 25 38 54 70 95 0.59 0.67 0.98 1.50 2.13 2.76 3.74 N 58 81 115 154 211 268 410 2.28 3.19 4.53 6.06 8.31 10.55 16.14 P 35 52 80 105 143 183 238 1.38 2.05 3.15 4.13 5.63 7.20 9.37 R 0° 0° 15° 15° 0° 0° 0° 0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - 0.79 1.30 1.30 - - - - - ØT - 1270* 1270* - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
M 15 17 25 38 54 70 95 0.59 0.67 0.98 1.50 2.13 2.76 3.74 N 58 81 115 154 211 268 410 2.28 3.19 4.53 6.06 8.31 10.55 16.14 P 35 52 80 105 143 183 238 1.38 2.05 3.15 4.13 5.63 7.20 9.37 R 0° 0° 15° 15° 0° 0° 0° O° 0° 15° 15° 0° 0° 0° 0° M 15 21 27 35 42 - O51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - OT - 1.30 1.30 -	L							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• •							
N 58 81 115 154 211 268 410 2.28 3.19 4.53 6.06 8.31 10.55 16.14 P 35 52 80 105 143 183 238 1.38 2.05 3.15 4.13 5.63 7.20 9.37 R 0° 0° 15° 15° 0° 0° 0° 0° 0° 15° 15° 0° 0° 0° 0° S 13 15 21 27 35 42 - 0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - U - 1270* 1270* 1270* - - - U - 1270* 1270* - - - - V - 285 360 <td>IVI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	IVI							
2.28 3.19 4.53 6.06 8.31 10.55 16.14 P 35 52 80 105 143 183 238 1.38 2.05 3.15 4.13 5.63 7.20 9.37 R 0° 0° 15° 15° 0° 0° 0° 0° 0° 15° 15° 0° 0° 0° 0° S 13 15 21 27 35 42 - 0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - ØT - 1270* 1270* 1270* - - - U - 1270* 1270* 1270* - - - U - 1270* 50.0* 50.0* - - - V - 285 3	Ν							
P 35 52 80 105 143 183 238 1.38 2.05 3.15 4.13 5.63 7.20 9.37 R 0° 0° 15° 15° 0° 0° 0° 0° 0° 15° 15° 0° 0° 0° 0° S 13 15 21 27 35 42 - 0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - U - 1270* 1270* 1270* - - - U - 1270* 1270* 1270* - - - U - 1270* 1270* - - - - V - 285 360 400 - - - - 11.22 14.17 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р				105			238
0° 0° 15° 15° 0° 0° 0° S 13 15 21 27 35 42 - 0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - U - 1270* 1270* 1270* - - - V - 285 360 400 - - - - 11.22 14.17 15.75 - - -								
S 13 15 21 27 35 42 - 0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - 0.79 1.30 1.30 - - - - U - 1270* 1270* 1270* - - - V - 285 360 400 - - - - 11.22 14.17 15.75 - - -	R							
0.51 0.59 0.83 1.06 1.38 1.65 - ØT - 20 33 33 - - - - 0.7 1.30 1.30 - - - - - U - 1270* 1270* 1270* - - - V - 285 360 400 - - - V - 11.22 14.17 15.75 - - -	C							0°
ØT - 20 33 33 - - - 0.79 1.30 1.30 - - - - U - 1270* 1270* 1270* - - - S0.0* 50.0* 50.0* - - - - V - 285 360 400 - - - - 11.22 14.17 15.75 - - -	5							-
- 0.79 1.30 1.30 - - U - 1270* 1270* - - - 50.0* 50.0* 50.0* - - - - V - 285 360 400 - - - - 11.22 14.17 15.75 - - -	ØT							
U - 1270* 1270* - - - 50.0* 50.0* 50.0* - - - - V - 285 360 400 - - - 11.22 14.17 15.75 - - - -								_
- 50.0* 50.0* - - - V - 285 360 400 - - - - 11.22 14.17 15.75 - - -	U							-
- 11.22 14.17 15.75		-				-	-	-
	V	-				-	-	-
		-				-	-	-

* = Any length up to 2000 mm upon request * = Any length up to 79" upon request



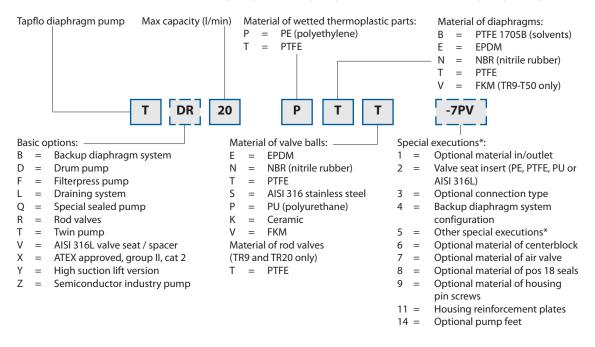
Drum pumps TD

General dimensions only, ask us for detailed drawings. Changes reserved without notice

Technical data

Data	Pump size							
	9	20	50	100	200	400	800	
General characteristics								
*Max capacity (l/min) / (US gpm)	11/2.9	24 / 6.3	60 / 15.8	125 / 33	330 / 87	570 / 150	820 / 216	
**Volume per stroke (ml) / (cu in)	13/0.80	50 / 3.05	87.5 / 5.34	280 / 17.1	933 / 56.9	2300/140.3	5125/312.7	
Max discharge pressure (bar) / (psi)	8/116	8/116	8/116	8/116	8/116	8/116	8 / 116	
Max air pressure (bar) / (psi)	8/116	8/116	8/116	8/116	8/116	8/116	8 / 116	
****Max suction lift dry (m) / (Ft)	1/3	1.5 / <mark>5</mark>	2.5 / 8	3.5 / 11	4/13	4 / 13	5 / 16	
Max suction lift wet (m) / (Ft)	8/26	8 / 26	8 / 26	8/26	8/26	8 / 26	8 / 26	
Max size of solids (ø in mm) / (in)	2/0.08	3/0.12	4/0.16	6/0.24	10/0.39	15/0.59	15 / <mark>0.59</mark>	
Max temp, pump in PE (°C) / (°F)	70/158	70 / 1 <mark>58</mark>	70 / 158	70 / 158	70 / 158	70 / 158	70 / 158	
Max temp, pump in PTFE (°C) / (°F)	100 / 212	100 / 212	100 / 212	100/212	100 / 212	100 / 212	-	
Min temperature (°C) / (°F)	-20 / -4	-20 / -4	-20 / -4	-20 / -4	-20 / -4	-20 / -4	-20 / -4	
W-1-L4								
Weight	1 ())	15/22	F (11	10 (22	24/52	44/07	140 (200	
Standard pump T in PE (kg) / (lb)	1/2.2	1,5 / 3.3	5/11	10/22	24/53	44 / 97	140 / 309	
Standard pump T in PTFE (kg) / (lb)	1.5 / <mark>3.3</mark>	2.5 / 5.5	7 / 15	17 / 38	44 / 97	90 / 199	-	
Drum pump TD in PE (kg) / (lb)	-	2/4.4	6/13	11 / 24	-	-	-	
Drum pump TD in PTFE (kg) / (lb)	-	3.5 / 7	9/19	-	-	-	-	
Filterpress pump TF in PE (kg) / (lb)	-	-	8/17	18 / 40	37 / 82	66 / 146	-	
Material of components								
Pump housing and all wetted				PE or PTFE			PE	
thermoplastic details								
Centre block (not wetted)				PP			1	
Diaphragms	PTFE, FKM		PTFE, I	PTFE 1705B, E	PDM or NBR			
Valve balls	-	-	PTFE, I	EPDM, NBR, A	SI 316L***, PI	J, Ceramic***		
Rod valves (TR9 and TR20)	PE or PTFE		-	-	-	-	-	
Air valve	Brass (s	standard), stai	inless steel Al	5l 316L, PET w	ith NBR (stan	dard), EPDM or	FKM o-rings	
O-rings (wetted)	FEP/FK	M (standard o	on pumps wit	h PTFE diaphr	agms), EPDM	, NBR or FKM		
Housing pin screws				nless steel AIS				
Diaphragm shaft			Stai	nless steel AIS	51 304			
Drum handle (TD pumps)	-	Stair	less steel AISI		-	-	-	
Reinforcement plates (TF pumps)	-	-	Stair	nless steel AIS	1316L		-	

* = Recommended flow is half of the the max flow, i.e. recommended flow for a T100 is 50 l/min (13.2 US gpm)


** = The value is based on pumps with EPDM diaphragms. Pumps with PTFE diaphragms have about 15% less volume

*** = Not available on T800

**** = This is max value with stainless steel valve balls, other valve ball materials may reduce the suction. Please consult us

Pump code

The model number on the pump tells the pump size and material of the pump components

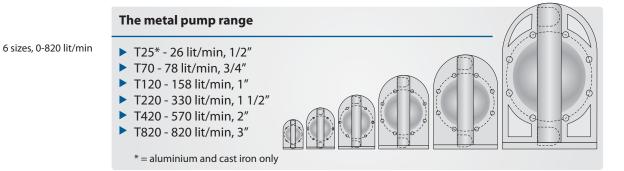
* = Ask us for complete pump code with all available options and executions. Changes reserved without notice

Aluminium and cast iron pumps. Few parts – easy to maintain is the major characteristic for these pumps.

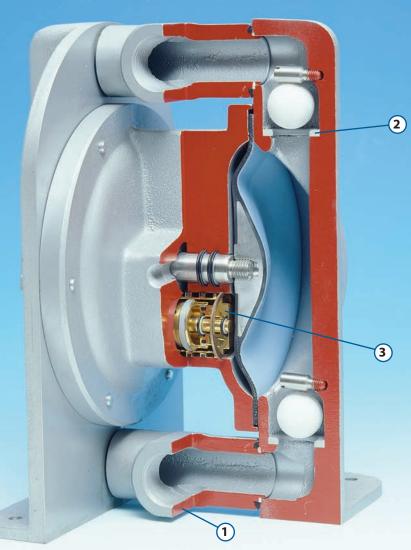
Tapflo pump range from stainless steel AISI 316, combines superior mechanical strength with chemical resistance. The latest model in the family is the 3" T820 S (pump at top, right side).

Explosion proof models are available (TX). Certified according to directive 94/9/EC (ATEX), group II, cat 2, for use in EX-zone 1. Contact us for information.

Metal series pumps


The compact, smooth and simple design is common for this series. Materials available are aluminium, cast iron, stainless steel and PTFE coated aluminium.

Aluminium and cast iron pumps


For transfer of pH-neutral fluids, both thin, thick, solid laden or abrasive. The aluminium and cast iron pumps are found in most fields; work shop and paint industries, purifying plants etc., to mention only a few.

AISI 316 stainless steel pumps

Made in lost wax cast method, ensuring great accuracy and finish. The stainless steel pumps combine great mechanical strength with good chemical features. AISI 316 is resistant to aggressive liquids like nitric acid and sodium hydroxide. The centre unit, which is not in contact with liquid, is made from corrosive resistant polypropylene (PP) as standard (other materials upon request).

70% fewer parts You will discover the ingenious simplicity when you maintain the pump. We use approximately 70% fewer parts compared with other brands.

1. Flexible installations

The connections may be rotated 180°. Simply turn the connections to fit your piping system. Threaded BSP or NPT connections is standard. Twin connections are also available.

2. Powerful valveseats

The valve seat is under constant stress from the movement of the valve ball. To obtain the best wear resistant, the integrated seat is made from AISI 316 stainless steel.

3. Low air consumption

The air distribution system is designed with shortest possible air distribution ways. This eliminates "dead spaces", resulting in high effiencey and low air consumption.

Typical applications

Industry	Example of applications	
► Workshop	Oil, fat, solvents, water, cooling fluid, lubricants	Aluminium and cast iron for
Print & paint	Glue, additives, varnish, ink, paint, latex, acid, resins, pigments	thick and thin pH neutral li-
Mining & construction	Adhesives, sump, dewatering, coal sludge, pastes	quids
► Ceramic industry	Abrasives, glaze, water, enamels, clay	Stainless steel for chemicals
► Chemistry	Acids, alkalis, alcohol, solvents, latex, emulsions	

Special versions

Drum pumps TD

The Tapflo drum pump is ideal for mobile use and is available in aluminium or stainless steel AISI 316. It is fit with an ergonomic designed handle in stainless steel AISI 316L. The drum tube is delivered in any length up to 2 m. The Tapflo diaphragm drum pump has many advantages compared with conventional drum pumps as stated below.

The metal drum pumps

- > TXD25 25 lit/min, 1/2"
- TXD70 70 lit/min, 3/4"
- TXD120 120 lit/min, 1"

TXD25 is available in aluminium only

Feature	Benefit
No rotating parts	Gentle liquid handling – ideal for shear sensitive liquids or abrasive products
High pressure	Able to handle even high viscous products
Infinitely variable flow	Easy to adjust the flow for a safe fluid handling

Special versions

PTFE coated pumps

Aluminium pump include all wetted parts coated with PTFE, is equipped with stainless steel in/ outlet ports. The model was developed for the printing industry where a low price alternative of the PE/PTFE pumps was required but aluminium not chemically resistant. It can be used for all sorts of applications where slightly acidous or alkaline liquids need to be transferred.

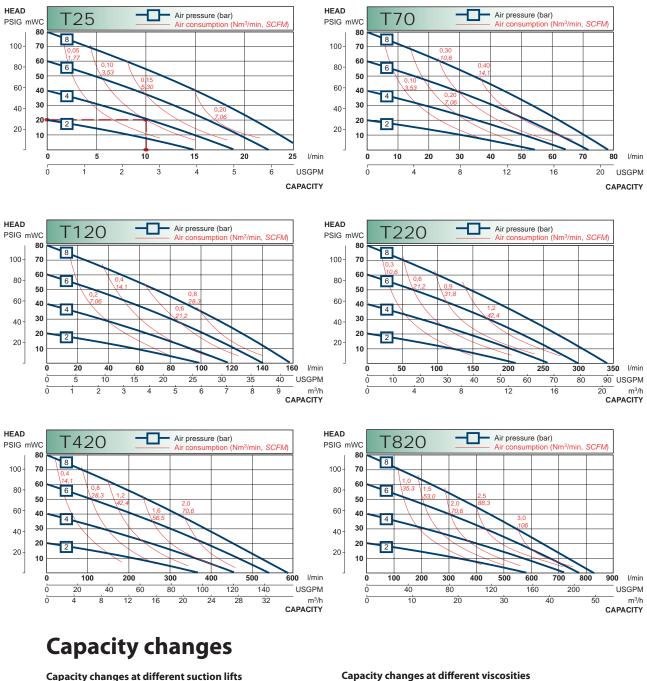
However, in applications with highly aggressive chemicals, we still recommend our full plastic PE & PTFE series pumps.

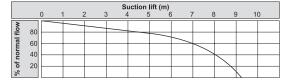
Twin pumps TT

Tapflo metal series pumps may be equipped with double in/outlet to achieve "two pumps in one" for blending, mixing or circulation of liquids. The liquid in one pump chamber is separated from the other one.

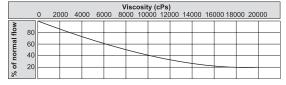
Printing Transfer and circulation of printing ink

Application examples


- Transfer of glue resin and hardener separated from each other
- Transfer and recirculation of ink to printing machines

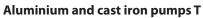

Performance curves

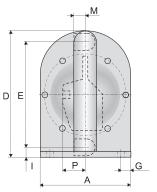
The performance curves are based on water at 20°C. Other circumstances might change the performance. See below how the capacity will change at different viscosities and suction lifts. These curves are valid for all metal pumps.

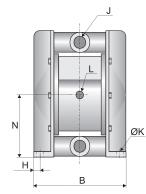

Example (see the red line):

A flow of 10 liter/minute is desired. The discharge head is calculated to 20 mWC. We choose a T25. It requires an air pressure of 4 bar and will consume approximately 0.10 Nm³ air per minute.

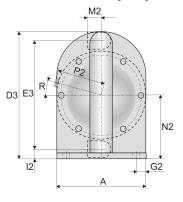
Capacity changes at different viscosities

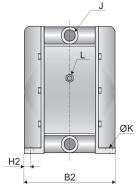

Changes reserved without notice

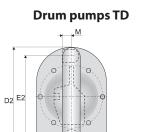

Dimensions

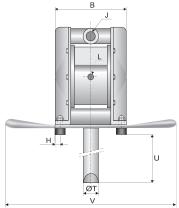

Dimensions for metal series

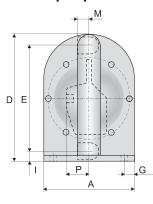
Dimensions in mm (where other is not indicated) Dimensions in inch (where other is not indicated)


Dim				_		
Dim	25	י 70	Pump size 120	e 220	420	820**
А	105	150	200	270	350	470
	4.13	5.91	7.87	10.63	13.78	18.50
В	116	168	195	265	342	488
B2	4.57	6.61	7.68 204	10.43 280	13.46 344	19.21 750
DZ	-	156 <u>6.14</u>	8.03	11.02	344 13.54	29.53
D	160	229	302	412	537	840
	6.30	9.02	11.89	16.22	21.14	33.07
D2	173	249	322	-	-	-
	6.81	9.80	12.68	-	-	-
D3	-	229	310	422	529	1341
E	132	9.02 190	12.20 252	16.61 346	20.83 449	52.80 688
-	5.20	7.48	9.92	13.62	17.68	27.09
E2	147	210	279	380	497	-
	5.79	8.27	10.98	15.96	19.57	-
E3	-	192	257	348	442	-
-	-	7.56	10.12	13.70	17.40	-
F	13 0.51	20 0.79	20 0.79	-	-	-
G	10	17	20	25	35	50
	0.39	0.67	0.79	0.98	1.38	1.97
G2	-	17	20	31	35	-
	-	0.67	0.79	1.22	1.38	-
Н	12	19	20	28	33	53
H2	0.47 -	0.75 13	0.79 23	1.10 34	1.30 32	2.09
пг	_	0.51	0.91	1.34	1.26	_
1	15	20	27	34	48	82
	0.59	0.79	1.06	1.34	1.89	3.22
12	-	19	27	36	45	-
	-	0.75	1.06	1.42	1.77	-
J	1/2″ 1/2	3/4″ <mark>3/4</mark>	1″	1 1/2″ 1 1/2	2″ 2	DN80(3") DN80(3")
J2	3/8"	1/2"	3/4″	1"	1 1/2"	-
52	3/8	1/2	3/4	1	1 1/2	-
ØK	6.5	8.5	8.5	8.5	8.5	12.5
	0.26	0.33	0.33	0.33	0.33	
L	1/8″	1/4″	1/4″	1/2″	1/2″	3/4"
Μ	1/8 19	1/4 29	1/4 33	1/2 44	1/2 57	3/4 84.5
111	0.75	1.14	1.30	1.73	2.24	3.33
M2	-	40	52	70	90	-
	-	1.57	2.05	2.76	3.54	-
Ν	81	115	153	207	274	356
	3.19	4.53	6.02	8.15	10.79	14.02
N2	-	115 4.53	155 6.10	212 8.35	266 10.47	-
Р	30	4.55	36	57	60	72.5
	1.18	1.85	1.42	2.24	2.36	-
P2	-	80	105	143	183	-
	-	3.15	4.13	5.63	7.20	-
R	-	15°	15°	0	0	-
S	- 145	15°	15°	0	0 42	-
5	14.5 0.57	21.2 0.83	27 1.06	35 1.38	42 1.65	_
ØT	20	30	30	-	-	-
	0.79	1.18	1.18	-	-	-
U	1270*	1270*	1270*	-	-	-
24	50.0*	50.0*	50.0*	-	-	-
V	285	360	400	-	-	-
	11.22 * = Any le	<u>14.17</u>	15.75 to 2000 r	- mm on re	nuest	-
* = Any length up to 2000 mm on request * = Any length up to 79" on request						






Stainless steel pumps T



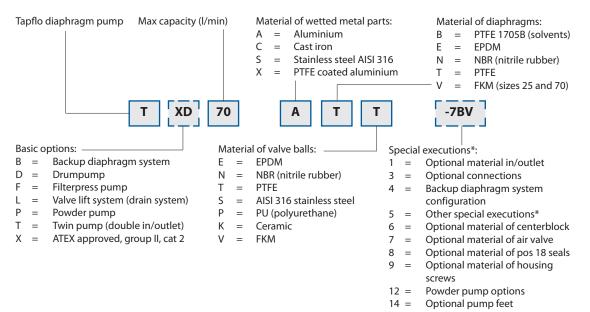
G

Twin pumps TT

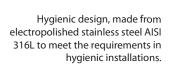
** = T820 stainless steel has other design than shown above, contact us for drawing. General dimensions only, ask us for detailed drawings. Changes reserved without notice

Technical data

Data	Pump size					
	25	70	120	220	420	820
General characteristics		'			'	
*Max capacity (l/min) / (US gpm)	26 / 6.8	78 / 20	158/41	330 / 87	570 / 150	820 / 216
**Volume per stroke (ml) / (cu in)	70 / 4.27	87.5 / 5.34	420 / 25.6	933 / 56.9	2300/140.3	5125/312.7
Max discharge pressure (bar) / (psi)			8/116	1	1	1
Max air pressure (bar) / (psi)			8/116			
*** Max suction lift dry (m) / (Ft)	1.5 / 4.9	3 / 9.8	4/13	4/13	4/13	5 / 16
Max suction lift wet (m) / (Ft)			8 / 26			
Max size of solids (ø in mm) / (in)	3/0.12	4/0.16	6/0.23	10/0.40	15 / 0.59	15/0.59
Max temp with EPDM/NBR (°C) / (°F)			80 / 176			
Max temp with PTFE (°C) / (°F)			110/230			
Min temperature (°C) / (°F)			-20 / -4			
Weight						
Standard pump in alu (kg) / (lb)	2 / 4.4	5/11	8 / 18	19/42	34 / 75	97 / 213
Standard pump cast iron (kg) / (lb)	7 / 15	10 / 22	17 / 37	44 / <mark>97</mark>	80 / 176	-
Standard pump in AISI 316 (kg) / (lb)	-	7 / 15	16 / 35	38 / <mark>84</mark>	68 / 150	145 / 319
Drum pump TD in alu (kg) / (lb)	3 / 6.6	7 / 15	10/22	-	-	-
Drum pump TD in AISI 316 (kg) / (lb)	-	9 / 20		-	-	-
Material of components						
Pump housing and all wetted		alı	uminium, cast	iron or AISI 31	6L	aluminium
metal details			,			or AISI 316L
Centre block, alu and cast iron pumps		alu	uminium (stan	dard) or cast ir	on	aluminium
Centre block, AISI 316 pumps	- PP (standard) or conductive PP -				-	
Diaphragms		N	BR, PTFE, PTFE	1705B or EPD	Μ	
Valve balls	N	BR, PTFE, AISI 3	16L****, EPDN	A, polyurethan	e or ceramic**	**
Air valve					BR (standard o	
O-rings	EPDM, NBR or FKM					
Gaskets						
Housing screws	Steel on	aluminium and	d cast iron pur	nps, AISI 304 (on stainless ste	el pumps
Diaphragm shaft			Stainless st	eel AISI 304		
Drum handle (TD pumps)		Stainless steel	AISI 316L		-	


* = Recommended flow is half of the the max flow, i.e. recommended flow for a T120 is 60 l/min (15.9 US gpm).

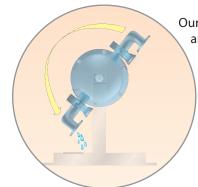
** = The value is based on pumps with EPDM diaphragms. Pumps with PTFE diaphragms have about 15% less volume.


*** = This is max value with stainless steel valve balls, other valve ball materials may reduce the suction. Please consult us. **** = Not available on TX820.

Pump code

The pump code details the specification, maximum capacity and materials of the major components.

* = Ask us for complete pump code with all available options and executions. Changes reserved without notice

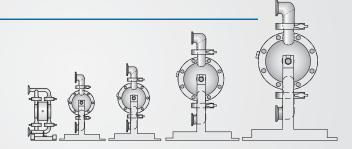


Explosion proof models are available. Certified according to directive 94/9/EC (ATEX), group II, cat 2, for use in EX-zone 1. Contact us for information.

Sanitary series

The Tapflo sanitary series is particularly designed to meet the requirements of the food, beverage, pharmaceutical and cosmetic industries. Lubrication free air distribution system, maintenance free ball check valve system and total visual inspection of the wetted parts are some of the major features for this pump series. The materials used on certain models comply with the FDA guidelines. Models with extra fine surface finish Ra 0.8 and Ra 0.5 are available upon request.

Made to be clean



Our design allows for total visual inspection of the wetted parts. There are no hidden areas where bacteria can grow. The manifold clamps and the housing screws are simply removed for complete disassembly and cleaning. The pump is also designed for cleaning and sterilization in place – C.I.P. and S.I.P. After such operations, the pump is easily turned on its support for drainage.

Drain the pump by turning the pump on its support (T80-T425)

The sanitary pump range

- T30 30 l/min, 1"
- T80 80 l/min, 1"
- T125 125 l/min, 1 1/2"
- T225 225 l/min, 2"
- T425 425 l/min, 2 1/2"
- T825 825 l/min, 3"

6 sizes, 0-825 l/min

The sanitary design...

1. Quick dismantling

Typical applications

Sector	Example of applications
Dairy products	Milk, cream, yogurt, cream cheese, melted cheese
 Grossery 	Ketchup, mayonnaise, tomato products, mustard
Beverages	Flavours, colouring, fruit juice
Bakery	Dough, ingredients
Brewery	Beer, flavours, colouring, wort
Hygiene	Soap, toothpaste, schampoo
Cosmetics	Cream, alcohol, perfume

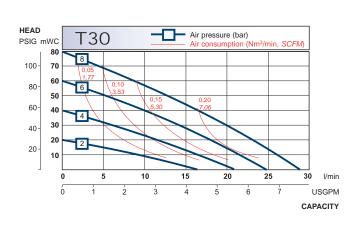
Special versions

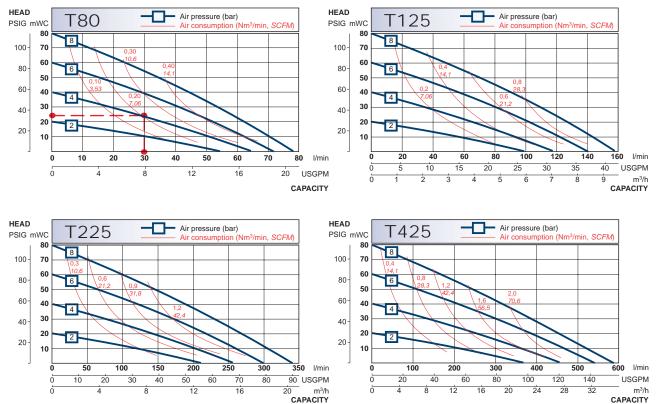
Variety of connection types

The pump is supplied as standard with ISOTC clamp connections. However, the pump may be equipped with almost any type of connection used in the hygienic field – DIN clamps, SMS milk, RJT, DIN aseptic to mention a few.

Heating jacket

The heating jacket is used when the pumped product has to maintain a specific temperature, high or low, throughout the process. A heating or cooling medium is continuously circulated in the heating jacket. The jacket is covering all the wetted parts of the pump. Available on all sanitary series pumps.


Flap valves for big solids


Flap valves are available for the sanitary pumps, ideal in applications with bigger size and delicate solids. The gentle pumping principle will maintain solids without any destruction. Available models with flap valves are T225 (38 mm solids max) and T425 (48 mm solids max).

Performance curves

The performance curves are based on water at 20°C. Other circumstances might change the performance. See below how the capacity will change at different viscosities and suction lifts. These curves are valid for all sanitary pumps.

Example (see the red line on the T80 curve): A flow of 30 liter/minute is desired. The discharge head is calculated to 25 mWC. We choose a T80. It requires an air pressure of 4 bar and will consume approximately 0.20 Nm³ air per minute.

Recommended flow is half of the the max flow, i.e. recommended flow for a T80 is 40 l/min (10.6 US gpm).

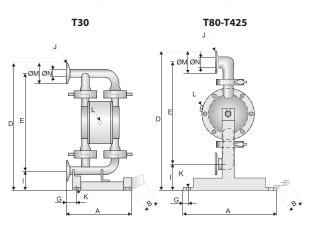
Capacity changes

Capacity changes at different suction lifts

					Su	uction I	ift (m)					
		0	1 :	2 3	3 4	5	6	37	' 8	3 9	9 1	0
wo	80											
alf	60							/				
% of normal flov	40								\geq			
ofn	20									\searrow		
%											K	

Capacity changes at different viscosities

	0	2000	4000	e000 9	Viscosit 3000 100	y (cPs)	00 140	00 16	000 100	00 200	000
	0	2000	4000	0000 0	5000 100	00 120	00 140	00 10	000 180	100 ZUC	000
% of normal flow	80 60 40 20										


Changes reserved without notice

Data

Dim	Pump size											
	30	80	125	225	425							
А	160	290	290	360	440							
	6.30	11.4	11.4	14.2	17.3							
В	230	295	320	420	485							
	9.06	11.6	12.6	16.5	19.1							
D	302	396	445	639	840							
	11.9	15.6	17.5	25.2	33.1							
E	241	297	349	514	698							
	9.49	11.7	13.7	20.2	27.5							
G	25	14	14	14	14							
	0.98	0.6	0.6	0.6	0.6							
1	48	73	71	86	97							
	1.89	2.9	2.8	3.4	3.8							
J TC ¹	1″	1″	1 1/2″	2″	2 1/2″							
DIN ²	DN25	DN25	DN40	DN50	DN65							
SMS ³	-	25	38	51	63.5							
RJT	3/4″	1″	1 1/2″	2 1/2"	3″							
K	9	9	9	9	9							
	0.4	0.4	0.4	0.4	0.4							
L	1/8″	1/4″	1/4″	1/2″	1/2″							
	1/8	1/4	1/4	1/2	1/2							
ØM*	50.5	50.5	50.5	64	91							
	2.0	2.0	2.0	2.5	3.6							
ØN*	22.6	22.6	35.6	48.6	66.8							
	0.9	0.9	1.4	1.9	2.6							

Dimensions for sanitary series

Dimensions in mm (where other is not indicated) Dimensions in inch (where other is not indicated)

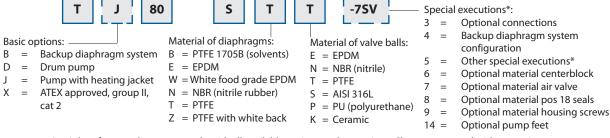
* = Dimensions for standard clamp connections only

1 = Clamp connections/pipes according to ISO 2852/2037

2 = Threaded connections according to DIN 11851 3 = Threaded connections according to SMS 1145

General dimensions only, ask us for detailed drawings. Flap valve pumps are not shown here, ask us for drawings.

Technical data	Pump size									
	30	80	125	225	425					
Max capacity (l/min) / (US gpm)	28 / 7.4	78 / 20.6	155 / 41	330 / 87	570 / 150					
*Volume per stroke (ml) / (cu in)	70 / 4.3	87.5 / 5.34	300 / 18.3	933 / 56.9	2300/140.3					
Max discharge pressure (bar) / (psi)	8 / 116	8/116	8 / 116	8/116	8 / 116					
Max air pressure (bar) / (psi)	8 / 116	8/116	8/116	8 / 116	8/116					
**Max suction lift dry (m) / (Ft)	1.5 / 4.9	3 / 9.8	4/13	4 / 13	4 / 13					
Max suction lift wet (m) / (Ft)	8 / 26	8 / 26	8 / 26	8 / 26	8 / 26					
Max size of solids (ø in mm) / (in)	3/0.12	4 / 0.16	6/0.24	10 / 0.39	15 / 0.59					
Max temperature (°C) / (°F)	110 / 230	110/230	110/230	110 / 230	110 / 230					
Weight (kg) / (lb)	4/9	8 / 18	11 / 24	21 / 46 35 / 77						
Material of components										
Wetted metal details	Stainless steel AISI 316L									
Centre block (not wetted)	РР									
Diaphragms	PTFE, PTFE 1705B, PTFE with white back, EPDM, white EPDM, NBR									
Valve balls	PTFE, EPDM, NBR, AISI 316, PU, Ceramic									
Air valve	Brass / NBR or optional AISI 316L / FKM									
Sealings (wetted)	PTFE or EPDM									
Housing pin screws	Stainless steel AISI 304									
Diaphragm shaft		Stainless steel AISI 304								


* = The value is based on pumps with EPDM diaphragms. Pumps with PTFE diaphragms have about 15% less volume.

** = This is max value with stainless steel valve balls, other valve ball materials may reduce the suction. Please consult us.

Pump code

The pump code details the specification, maximum capacity and materials of the major components

Tapflo diaphragm pump Max capacity (I/min) Material of wetted metal parts: S = stainless steel AISI 316L

* = Ask us for complete pump code with all available options and executions. Changes reserved without notice

Aseptic EHEDG series

Keeping your process clean

Tapflo Aseptic series pumps are designed for service in pharmaceutic-, biotech- and food industries where a clean process is the key. Tapflo Aseptic series is EHEDG certified, has FDA and USP VI approved materials and conform to the ATEX directive 94/9/EG.

Typical applications

Food & dairy: Soup, cream, syrup, dairy products, flavoring, alcohol, chocolate, paste

Pharmaceutics & cosmetics: Cream, paste, alcohol and filtration gel

Features & benefits

- No bacteria growth no horizontal areas
- Easy cleaning and draining designed for CIP and SIP cleaning
- Gentle pumping no damage of sensitive products
- Hygienic surfaces housings made from electro polished stainless steel AISI 316L, Ra 0.8 (standard) or Ra 0.5 on request
- Hygienic design diaphragms without any nuts or plates in the pumped product
- Wide range of connection types available: TriClamp, sanitary threads (DIN, SMS) etc
- No leakage no rotating shaft seals
- Flexible installation self priming
- Safe in explosion hazardous areas conform with the ATEX directive
- Reliable in service can run dry and against closed valve without damage
- Environmental friendly lube free air valve

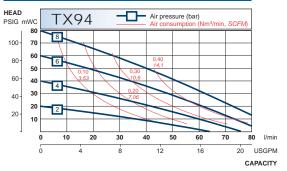
Aseptic EHEDG series

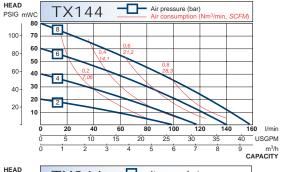
The EHEDG certificate

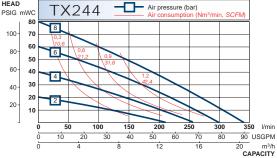
The EHEDG (European Hygienic Engineering & Design Group) certificate is your guarantee that the design is according to the hygienic guidelines. Furthermore the pump is clean ability tested, which means bacteria does not grow in the pump after cleaning and draining procedure.

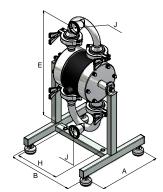
Smooth surfaces and clean ability are important keys for the EHEDG certification

Technical data & dimensions


Data									
Model	TX94	TX144	TX244						
Max flow	94 l/min	144 l/min	330 l/min						
Max pressure	8 bar	8 bar	8 bar						
Max air pressure	8 bar	8 bar	8 bar						
Dry suction lift	2 m	3 m	4.4 m						
Max solid size	6 mm, bigger if soft	6 mm, bigger if soft	10 mm, big- ger if soft						
Temperature	-20° +110°C	(temporary high	er)						
Weight	15 kg 22 kg 46 kg								
Connections	Triclamp (standard), SMS, DIN and RJT threads, DIN 11864 clamp								
ATEX details	Group II, cat 2, T4								
Materials and options									


Housing, AISI 316L, Ra 0.8 manifolds Ra 0.5 on request Diaphragms PTFE (FDA & USP VI) PTFE 1705B (solvents, FDA & USP VI) EPDM (FDA on reguest) White EPDM (FDA) PTFE with white back (FDA & USP VI) PTFE (FDA) Valves (ball type) PTFE (USP VI & FDA) EPDM (FDA on request) AISI 316L EPDM (FDA) O-rings EPDM (USP VI & FDA) FEP/FKM (FDA) Options Backup diaphragm system

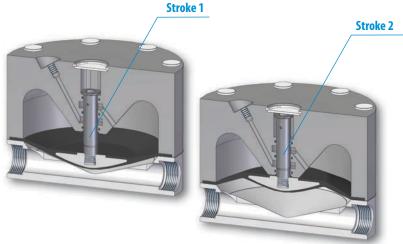

Dimensions (mm)									
А	260	280	360						
В	275	278	340						
E	447	488	700						
н	185	188	270						
J	DN 40	DN 50	DN 65						


Changes reserved without notice

Performance curves

DT series Active pulsation dampeners

The active pulsation dampener is the most efficient way to remove pressure variations on the discharge of the pump.


The Tapflo pulsation dampener works actively with compressed air and a diaphragm, automatically setting the correct pressure to minimise the pulsations.

Explosion proof models are available Certified according to directive 94/9/EC (ATEX), group II, cat 2 , for use in EX-zone 1. Contact us for information.

How it works

When the liquid pressure falls in the piping system, the pulsation dampener supplies extra pressure to the discharge between the pump strokes by displacing liquid by means of diaphragm movement. This pumping action created by the dampener, decreases the pressure variations and pulsations.

Features when using the DT series pulsation dampener

with dampene

The pressure variation in a discharge line with and without a pulsation dampener.

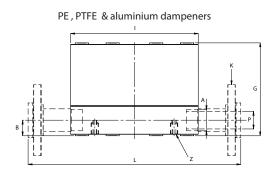
- Minimized vibrations and water hammer effects
- Protection of all kinds of instruments in your pipe system
- Optimized pump performance and reduced maintenance costs

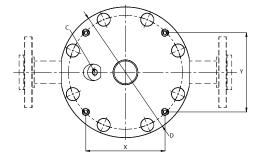
Options & accessories

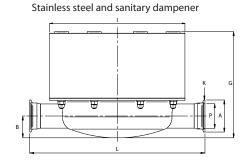
The dampening effect

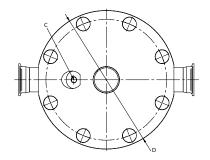
■ Pulsation dampener with stand

Pulsation dampener with pump





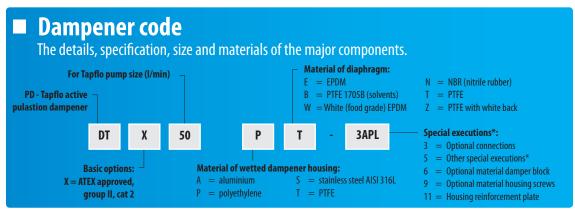



TK built-on dampener

DT series Active pulsation dampeners

Dimensions in mm (where other is not indicated) | Dimensions in inch (where other is not indicated)

	MENSION									DAMP	ENER SIZE								
	IVIEINSION	9/20	25	30	50	70	80	100	120	125	200	220	225	400	420	425	800	820	825
	A (BSP)	G	i 3/8"		G 1/2"	G 3,	/4"	G	1"		G 1	l 1/2"			G 2"		-	G 3 1/2"	-
	в	15/33 ¹	13	10,6	17/35 ¹	15,5	16,5	25,5/42,5 ¹	22,5	16,5	33/50 ¹	30	43,5	40,5/58 ¹	38	46	92	90	19,3
	в	0,59/1,3 ¹	0,51	0,42	0,67/1,38 ¹	0,61	0,65	1/1,67 ¹	0,89	0,65	1,3/1,97 ¹	1,18	1,71	1,59/2,28 ¹	1,50	1,81	3,62	3,54	0,76
	С	G	1/8"		G	1/4"		G	1/4"		G	1/4"		(5 1/4"			G 1/4"	
	D		110		1	158		2	08		2	277			360			470	
	U	4	1,33		6	,22		8,	.19		10	0,91			14,17			18,50	
	G	85/103 ¹	81	78,5	109,5/129,5 ¹	105,5	117,5	144,5/161,5 ¹	141,5	135	200,5/217,5 ¹	197,5	216	244/261 ¹	241	256,5	394	392	330
	9	3,35/4,061	3,19	3,09	4,31/5,1 ¹	4,15	4,63	5,69/6,36 ¹	5,57	5,31	7,89/8,56 ¹	7,78	8,50	9,61/10,281	9,49	10,10	15,51	15,43	12,99
	1	:	107		1	155		2	03		2	270			352			470	
			1,21		6	,10			,99		10	0,63			13,86			18,50	
	K (BSP)	G 3/8"		G 1/2" G 3/4"		G 1"		G 1 1/2"			G 2"		- G 3 1/2"		-				
	DIN & ANSI	235		-	285			375		-	450			550		-	70	0	-
	Flange	9,25		1.1	11,22		1.1	14,76		1.0	17,72		1.1	21,6	5		27,	56	1.1
L	BSP	107		-	155		-	203		-	270		-	352		-	47	0	-
	551	4,21			6,10		1.1	7,99			10,63		1.1	13,8	6	-	18,	50	
	Other	-		180	-		210	-		300	-		350	-		450	-		600
	Connections ³			7,09			8,27			11,81			13,78			17,72			23,62
	P (BSP)	G	i 3/8"		G 1/2"	G 3,	/4"	G	1"		G 1	G 1 1/2"		G 2"				G 3 1/2"	-
	х	36		-	90,3			113,8		-	167,6		-	226,	3	-	29	7	-
	^	1,42			3,56		1.0	4,48		1.1	6,60		1.1	8,91		-	11,	69	
	Y	86,8		-	100,3		-	135,6		-	167,6		-	226,		-	29	7	-
		3,42			3,95			5,34			6,60		1.1	8,99		-	11,	69	-
	Z	M4x20	M4x17	-	M4x20	M4x17	-	M8x30/22 ¹	M8x25	-	M8x30/22 ¹	M8x25	-	M8x30/22 ¹	M8x25	-	M8x22 PTFE	M8x25	-


PE / PTFE ALU/SS

2

3

ISO 2852, DIN 11851, SMS1145, BS 4825 (RJT)

Dimensions for other connections in IOM Manual p. 17

* = Ask us for complete pump code with all available options and executions. Changes reserved without notice

Guardian systems

The Guardian is an energy conservation device designed to protect an air operated double diaphragm (AODD) pump from operating in an inefficient manner that uses unnecessary energy and reduces the life of its parts. It also offers the added benefit of providing greater safety to applications of high risk.

Functions and applications

The Guardian monitors fluid pressure, changing its output if the monitored pressure rises above or falls below the set point of the Guardian (dependant on configuration), controlling the associate pump accordingly for the following applications:

- Dry Run & Stop
- Dead Head & Stop
- Dead Head & Restart
- Barrier Pump Monitoring and Control

Barrier Protection

Barrier pumps (TB) have an additional set of diaphragms used to backup the primary diaphragms. In case of a breach the liquid remains inside the pump, instead of leaking out through the air exhaust. The Guardian monitors the pressure between the primary and secondary diaphragms, stopping the pump if the pressure increases above the set point.

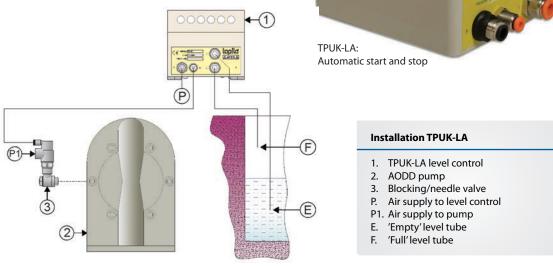
Dry run & stop

The Guardian monitors the fluid discharge pressure of the pump, stopping it if the pressure falls below the set point, caused by a lack of media on the suction causing air to be ingested into the pump.

Dead head and stop

The Guardian monitors the fluid discharge pressure of the pump, stopping it if the pressure rises to the set point, caused by a closed valve or over pressure in the discharge line.

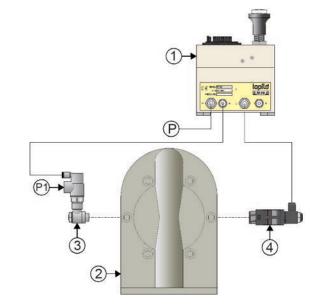
Dead head and restart


The Guardian monitors the fluid discharge pressure of the pump, stopping it if the pressure rises to the set point, caused by a closed valve or over pressure in the discharge line. When the pressure falls below the set pressure, the pump automatically restarts.

For further details, please check the separate brochure systems & accessories for pumps

Pneumatic level control

The level control is small, effective & extremely simple to install and use. This ingenious system is operated with pneumatic components only. The level control may be installed in sumps, tanks or tubs to start (automatic with TPUK-LA or manual with TPUK-LM) and automatic stop the pump at certain liquid levels.



Pneumatic batch control

Tapflo's totally pneumatic batcher can control any Tapflo AODD pump to produce accurate and repeatable dispensed volumes. Fully programmable allowing you to set the batch amount (TPUK-BP) or batch time (TPUK-BT). Available also with internal mounted control to prevent unauthorised adjustments (TPUK-BPI and TPUK-BTI).

TPUK-BP: Predetermining counter batch control

Installation TPUK-BP

- 1. TPUK-BP batch control
- 2. AODD pump
- 3. Blocking/needle valve
- 4. Muffler with connection/adjuster
- P. Air supply to batch control P1. Air supply to pump

For further details, please check the separate brochure systems & accessories for pumps

Stroke counter - low pressure VFC

A stroke to volt free contact (VFC) is available for integration with PLC systems. Simply connect to any AODD pump via the air exhaust muffler to monitor the pump strokes. TPUK-PS1 must be combined with a modified muffler type TPUK-MU.

Life counter TPUK-LC

Tapflo's life counter simply connects to the AODD pump air exhaust, representing the strokes on the LCD display. Compact, easy to use and cost effective this simple system will allow you to control servicing and implement a preventative maintenance routine. TPUK-LC must be combined with a modified muffler type TPUK-MU.

Filter regulator & needle valve kit

There are many benefits of using an individual filter regulator and needle valve for your AODD pump. You will always be able to run the pump with right air quality and optimum pressure and speed to save energy. Furthermore the lifetime of pump components will increase. The kit includes a filter regulator, gauge, wall bracket, needle valve, push fit connections and screw adaptor to suit the AODD pump. The filter is 5 micron and regulator is 0-8 bar.

Available models:

FR/NV1/8"	1/8" (for pumps TR9-T30)
FR/NV1/4″	1/4" (for pumps T50-T125)
FR/NV1/2"	1/2" (for pumps T200-T425)

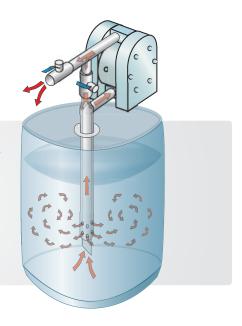
For further details, please check the separate brochure systems & accessories for pumps

Tapflo Pneumix Technology

The Pneumix was predominantly developed for the paint and ink industry where most raw materials in drums or containers settle out over time and need to be mixed or blended prior to use. This usually means rolling, shaking or pumping to a mixing vessel; that adds time, waste, mess and expense.

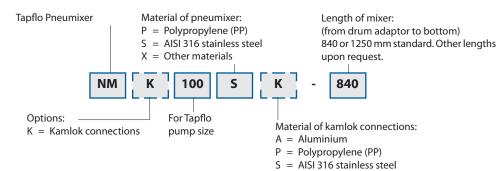
Some benefits with the Pneumix...

- Eliminates problems with conventional mixing
- No need for pumping to mixing vessel
- No paddles or rotating blades
- Fully controllable pneumatic operation and control
- No moving parts utilises pump power to mix & dispense
- Variable agitation
- No shear
- No air entrainment
- Closed vessel mixing system
- Reduced environmental exposure
- Suits all containers up to 1000 litre IBC


How it functions...

Mixing mode

The discharge valve is closed and the recirculation valve is open, to allow the product to circulate in the container


Transfer mode

The discharge valve is open and the recirculation valve is partially open, to both mix and to transfer the product out of the Pneumix

Pneumix code

The code details the specification, size and materials of the major components

Powder pumps

Trouble free, safe and clean transfer of powders AT

Economical compared with other complex powder systems

Convenient and safer than manual powder handling

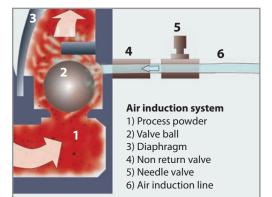
Reduced contamination


The powder is transferred in a hermetic system from the powder container to your process.

Economical and compact solution

The Tapflo powder transfer pump can do the same job as many complex and large powder systems. The compact design also makes the unit portable.

What kind of powders?


The powder transfer pump will handle different types of process powders, with specific weight from 80 up to 720 kg/m³ dry weight. Generally, if the powder does not clump together when you squeeze it in your hand, the Tapflo powder transfer pump can be used suc-

cessfully. A few examples of common powders are sintering powder, carbon black, resins and silicones.

Capacity

The capacity of the powder transfer is extremely different from one powder to another, depending on the consistency and weight etc. Fore more specific information about the capacity in your application, please contact your local Tapflo distributor, or fill out the inquiry form on our website www.tapflo.com.

No start up problems

The air induction system eliminates powder pack up problems when starting the pump. Air is induced to the powder side of the pump for diffusion of the powder. The induction flow can manually be adjusted by means of a needle valve to obtain a optimum performance.

Available models - data

Model	TXP220	TXP420				
In/outlet connections	1 1/2″ BSP threads (NPT upon request)	2" BSP threads (NPT upon request)				
Features	Complete air induc	tion system included				
Explosion protection	ATEX marked according to group IIG (gas) / IID (dust), category 2					
Housing material	PTFE coated aluminium					
Diaphragm material	EPDM (NBR or PTFE upon request)					
Valve material	EPDM (NBR, PTFE, AISI 316 or PU upon request)					
In/outlet material	Stainless steel AISI 316L					

Other Tapflo products

USP VI approved pharmaceutical series pumps

air driven pump for pharmaceutical and biotech industries

TU53 PTT-5UVI TU103 PTT-5UVI THU203 PTT-5UVI THU403 PTT-5UVI

50 l/min 100 l/min 200 l/min 400 l/min

We introduce our unique USP approved (United States Pharmacopoeia) hygienic PE pump, now upgraded to USP VI. This pump series is developed in co-operation with one of the world leading supplier to the biotech market. It serves the biotech- and pharmaceutical industries in numerous applications.

Features & benefits

- Sanitary design with smooth internal surfaces
- Inert materials no contamination of the pumped product
- USP VI approved materials
- Extremely easy to maintain pumphousing with very few components

Pumphousing with only three parts makes it extremely

High finish and hygienic approved materials.

Other products manufactured by Tapflo

СТУ

vertical pumps A vertical centrifugal pump that is simple but very reliable in duty. CTV is specialized for transfer and circulation of various liquids from containers, sumps and tanks. Available in PP, PVDF and stainless steel AISI 316L.

Close coupled, compact and hermetic

pumps ideal for service in little spaces. Avail-

CTM magnetic drive pumps

able in PP and PVDF.

CTI & CTH centrifugal pumps Compact pumps manufactured from stainless steel AISI 316L. CTH (hygienic) has electro polished surfaces, while CTI (industrial) has glass blast surfaces.

FT filters

Cartridge filters with 1, 3 or 7 cartridges and oil absorb filters. Standalone filter units to be combined with CTV vertical pumps or complete compact units with CTM pumps. easy to maintain.

TAPFLO AB

Sweden

Filaregatan 4 | S-442 34 Kungälv

Tel: +46 303 63390 Fax: +46 303 19916

E-mail addresses: Commercial questions: sales@tapflo.com Orders: order@tapflo.com Tech support: support@tapflo.com

Tapflo products and services are available in 67 countries on 6 continents.

Tapflo is represented worldwide by own Tapflo Group Companies and carefully selected distributors assuring highest Tapflo service quality for our customers' convenience.

AUSTRALIA | AUSTRIA | AZERBAIJAN | BELARUS | BELGIUM | BOSNIA | BRAZIL | BULGARIA | CANADA | CHILE | CHINA | COLOMBIA | CROATIA | CZECH REPUBLIC | DENMARK | ECUADOR | ESTONIA | FINLAND | FRANCE | GREECE | GEORGIA | GERMANY | HONG-KONG | HUNGARY | INDIA | INDONESIA | IRAN | IRELAND | ISRAEL | ITALY | JAPAN | JORDAN | KAZAKHSTAN | LATVIA | LITHUANIA | MACEDONIA | MALAYSIA | MEXICO | MONTENEGRO | MOROCCO | THE NETHERLANDS | NEW ZEALAND | NORWAY | POLAND | PORTUGAL | PHILIPPINES | ROMANIA | RUSSIA | SERBIA | SINGAPORE | SLOVAKIA | SLOVENIA | SOUTH AFRICA | SOUTH KOREA | SPAIN | SWEDEN | SWITZERLAND | SYRIA | TAIWAN | THAILAND | TURKEY | UKRAINE | UNITED ARAB EMIRATES | UNITED KINGDOM | USA | UZBEKISTAN | VIETNAM

Tapflo Group Companies

Austria Tapflo Austria Tel: +43 732 27292910 sales@tapflo.at

Azerbaijan Tapflo Azerbaijan LLC Tel: +994 502660799 sales@tapflo.az

Baltic States Tapflo Latvia Tel: +371 67472205 sales@tapflo.lv

Belarus Tapflo Belarus Tel: +375 17 3934609 sales@tapflo.by

Bulgaria Tapflo EOOD Tel: +359 (0)2 974 18 54 office@tapflo.bg

Canada Tapflo Canada Tel: +1 514 813 5754 canada@tapflo.com **Croatia** Tapflo GmbH Tel: +385 91 4884 666 sales@tapflo.hr

Czech Republic Tapflo s.r.o. Tel: +420 513 033 924 tapflo@tapflo.cz

China Tapflo (Wuxi) Tel: +86 510 8241 7602 sales@tapflo.cn

Denmark Tapflo Danmark Tel: +45 36 454600 info@tapflo.dk

France Tapflo France Tel: +33 1 34 78 82 40 info@tapflo.fr

Georgia Tapflo Georgia Tel: +995 577 463010 sales@tapflo.ge India Tapflo Fluid Handling India Pvt Ltd Tel: +91 20 65000215 ad@tapflo.in

Ireland Tapflo Ireland Ltd Tel: +353 1 2011911 info@tapflo.ie

Italy Tapflo Italia Tel: +39 0362307698 info@tapfloitalia.com

Japan Tapflo Japan K.K. Tel: +81-3-6240-3510 tapflojp@tapflo.co.jp

Kazakhstan Tapflo Kazakstan Tel: +7 727 3278347 sales@tapflo.kz

Poland Tapflo Sp. z o.o. Tel: +48 58 530 42 12 info@tapflo.pl **Romania** S.C. Tapflo Rom. S.r.l. Tel: +40 21 3451255 sales@tapflo.ro

Russia Tapflo Company Tel: +7 495 232 18 28 sales@tapflo.com.ru

Serbia Tapflo d.o.o. Tel: +381 21 44 58 08 sales@tapflo.rs

Slovakia Tapflo s.r.o. +421 911 137 883 tapflo@tapflo.sk

Slovenia Tapflo GmbH Tel: +386 68 613 474 sales@tapflo.hr

Spain Tapflo Iberica Tel: +34 91 8093182 avives@tapfloiberica.es South Africa Tapflo (Pty) Ltd Tel: +27 31 701 5255 sales@tapflo.co.za

Turkey Tapflo Makina Ltd Tel: +90 216 467 33 11 sales@tapflo.com.tr

Ukraine TOB Tapflo Tel: +380 44 222 68 44 sales@tapflo.com.ua

Uzbekistan Tapflo Uzbekistan Tel: +998 712370940 sales@tapflo.uz

United Kingdom Tapflo (UK) Ltd Tel: +44 2380 252325 sales@tapflopumps.co.uk

www.tapflo.com